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ABSTRACT

Introduction Although type 2 diabetes mellitus (T2DM)

is associated with alterations in brain structure, the
relationship between glycemic control indices and brain
imaging markers remains unclear. This study aimed to
investigate the association between continuous glucose
monitoring (CGM)-derived glycemic control indices and
brain imaging biomarkers assessed by MRI.

Research design and methods This cross-sectional
study included 150 patients with T2DM. The severity

of cerebral white matter lesions (WMLs) was assessed
using MRI for deep and subcortical white matter and
periventricular hyperintensities. The degree of medial
temporal lobe atrophy (MTA) was assessed using voxel-
based morphometry. Each participant wore a retrospective
CGM for 14 consecutive days, and glycemic control
indices, such as time in range (TIR) and glycemia risk
index (GRI), were calculated.

Results The proportion of patients with severe WMLs
showed a decreasing trend with increasing TIR (P for
trend=0.006). The proportion of patients with severe WMLs
showed an increasing trend with worsening GRI (P for
trend=0.011). In contrast, no significant association was
observed between the degree of MTA and CGM-derived
glycemic control indices, including TIR (P for trend=0.325)
and GRI (P for trend=0.447).

Conclusions The findings of this study indicate that the
severity of WMLs is associated with TIR and GRI, which are
indices of the quality of glycemic control.

Trial registration number UMIN000032143.

INTRODUCTION

The number of cases and the prevalence of
type 2 diabetes mellitus (T2DM) have continu-
ously increased in recent years.' Furthermore,
many epidemiological studies have reported
that T2DM is associated with an increased
risk of cognitive impairment and dementia.**
Several studies have sought to determine

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Epidemiological studies have reported that type 2
diabetes mellitus is associated with alterations in
brain structure.

= The association between brain imaging biomarkers
and continuous glucose monitoring (CGM)-derived
glycemic control indices remains unclear.

WHAT THIS STUDY ADDS

= The severity of cerebral white matter lesions (WMLs)
is associated with CGM-derived glycemic control in-
dices, such as time in range and glycemia risk index.

HOW THIS STUDY MIGHT AFFECT RESEARCH,

PRACTICE OR POLICY

= Our findings indicate that CGM-derived indices are
useful glycemic control indicators for the prevention
of severe WMLs.

whether T2DM is associated with specific brain
changes.” For example, global brain atrophy,
medial temporal lobe atrophy (MTA), and
cerebral white matter lesions (WMLs) are
brain imaging biomarkers that can assess
parenchymal brain injury.” Reduced hippo-
campus and amygdala volumes have been
found in studies using MRI in patients with
T2DM compared with those without T2DM.°
On the other hand, some reports indicate
that hippocampal atrophy is not prominent
in patients with T2DM, but rather a reduction
in global brain volume.” In addition, WML, a
form of cerebral small vessel disease (CSVD),
has been linked to an increased risk of stroke,
all-cause mortality, and dementia,g"11 and
T2DM has been reported to be associated
with the progression of WMLs.'?
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Regarding the association between brain imaging
markers and glycemic control indices, a significant asso-
ciation between increased 2-hour blood glucose levels
in the 75g oral glucose tolerance test and gray matter
atrophy in various brain regions has been reported."”
While some studies found a significant association
between high Hemoglobin Alc (HbAlc) levels and
WMLs,'* others found no significant association.” '
Although HbAlc is often used as a glycemic control indi-
cator, it limitedly measures average blood glucose levels,
and thus fails to adequately assess hypoglycemia or post-
prandial hyperglycemia.'”

Advances in continuous glucose monitoring (CGM)
leading to its increasing use in daily clinical practice. CGM
can provide detailed information on glycemic control,
including postprandial hyperglycemia and nocturnal
hypoglycemia. Measuring HbAlc, glycated albumin
(GA), and CGM-derived glycemic control indices, simul-
taneously, may provide implications for examining the
association between glycemic control status and brain
imaging biomarkers in patients with T2DM. This study
aimed to investigate the association of WMLs and MTA
as assessed by MRI with CGM-derived glycemic control
indices in Japanese patients with T2DM.

METHODS

Study design and participants

This study was conducted as part of the Hyogo Diabetes
Hypoglycemia Cognition Complications (HDHCC)
study. The HDHCC study is a multicenter cohort study
designed to investigate the relationship between glycemic
control and chronic diabetes complications, such as
cognitive impairment in outpatient clinic patients. This
study included patients with T2DM aged 50-79 years who
underwent retrospective CGM and MRI scans at Hyogo
Medical University Hospital (Japan) between April 2018
and October 2022. The exclusion criteria were as follows:
(1) participants with dementia, (2) those with severe
hepatic dysfunction (defined as alanine transaminase
>threefold the upper limit of normal), (3) those with
chronic renal failure (estimated glomerular filtration
rate (eGFR) <30mL/min/1.73 m?), (4) those unable to
obtain CGM data for >7 consecutive days, (5) those with
type 1 diabetes, and (6) those deemed ineligible for this
study by their physician.

Assessment of the glycemic control indices

The FreeStyle Libre Pro system (Abbott Japan, Tokyo,
Japan) was used as a retrospective CGM, and interstitial
glucose levels were monitored for 14 consecutive days.
A mean absolute relative difference (MARD) of 11.4%
has been reported for this CGM system after 14 days of
use.'® The measurement accuracy of the FreeStyle Libre
Pro system has been reported to decrease slightly on
days 1 and 14 of use, with MARDs of 11.9%, 10.9%, and
10.8% on days 2, 7, and 14, respectively.'® An interna-
tional consensus statement on the use of CGM metrics

in clinical trials recommends that all CGM data should
be used for analysis regardless of the accuracy of CGM
measurement in conducting clinical studies”; however,
in this study, the results using glucose data for 10 days
from day 3 to day 12 of CGM use are also included,
considering the measurement accuracy of the FreeStyle
Libre Pro system.

Glycemic control indices were calculated using methods
described previously.17 1922 The following glycemic
control indices were calculated: (1) mean sensor glucose
(S8G), (2) coefficient of variation (CV), (3) time spent
with SG values in the range of 70-180mg/dL (time in
range (TIR)), (4) time spent with SG values higher than
250 mg/dL (time above range (TAR®%)), (5) time spent
with SG values higher than 180mg/dL (TAR™'®), (6)
time spent with SG values below 70mg/dL (time below
range (TBR™)), (7) time spent with SG values below
54mg/dL (TBR™"), (8) glycemia risk index (GRI), (9)
hyperglycemia component (HyperCompo) in GRI calcu-
lation, (10) hypoglycemia component (HypoCompo) in
GRI calculation, (11) high blood glucose index (HBGI),
and (12) low blood glucose index (LBGI). HbAlc and
GA were measured while the CGM device was worn.

HbAlc, GA, eGFR, and urine albumin-to-creatinine
ratio were determined at the time of attaching the CGM
device.

Assessment of brain imaging biomarkers

All participants underwent MRI with a 3.0-T scanner
(Achieva 3.0T MR system, Koninklijke Philips N.V,,
Amsterdam, Netherlands). The axial T2-weighted images
were acquired using a turbo spin echo technique with
4mm slices and a 1.5mm interslice gap (repetition time
(TR), 3000 ms; echo time (TE), 80 ms).

Periventricular hyperintensity (PVH), and deep and
subcortical white matter hyperintensity (DSWMH) were
considered as WMLs. WMLs were assessed by a radiol-
ogist (Department of Radiology, School of Medicine,
Hyogo Medical University, Japan) who was blinded to the
patient’s background and glycemic control status. The
same radiologist evaluated all images to avoid discrep-
ancies in the image reading results. WMLs were assessed
in accordance with the Brain Doc guidelines 2019, and
lesions corresponding to grade 3 on the Fazekas scale
for PVH and DSWMH were regarded as severe cases of
WMLs2 24

The MTA was assessed using VSRAD advanced software
(Eisai, Tokyo, Japan). Three-dimensional sagittal sections
of T1-weighted images with 1 mm slices and no interslice
gap were obtained for VSRAD using a fast field echo tech-
nique (TR, 7.46 ms; TE, 3.41 ms). VSRAD quantitatively
evaluates the degree of brain atrophy in the volume of
interest (VOI, which includes the participant’s ento-
rhinal cortex, amygdala, and hippocampus) as a Z-score
by statistically comparing it with a brain MRI database of
cognitively normal participants. Assessing MTA severity
using VSRAD is effectively used for determining early
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Alzheimer’s disease.” *° Here, Z-scores in the target VOI
of>1.0 were characterized as MTA.

Other parameters

Information regarding the duration of T2DM and
comorbidities was obtained from the attending physician
or the patient’s medical records. We defined dyslipid-
emia as the presence of low-density lipoprotein choles-
terollevel of 2140mg/dL, triglyceride level of 2150 mg/
dL, high-density lipoprotein cholesterollevel of <40mg/
dL, or dyslipidemia treatment. Hypertension was defined
as systolic blood pressure of 2140 mm Hg, diastolic blood
pressure of 290 mmHg, or hypertension treatment.

Statistical analysis

The results are presented as medians (IQRs) unless
otherwise stated. Participants of this study were divided
into three groups for HbAlc (<7.0% (52 mmol/mol),
7.0%-7.9% (52-62mmol/mol), and >8.0% (63 mmol/
mol)), TIR (<50.0%, 50.0%-70.0%, and >70.0%), TAR"?*°
(<5.0%, 5.0%-10.0%, and >10.0%), TAR"™ (<25.0%,
25.0%-50.0%, and >50.0%), TBR (<1.0%, 1.0%—4.0%,
and >4.0%), HyperCompo (<15%, 15%-30%, and
>30%), HypoCompo (<1.0%, 1.0%-2.4%, and >2.4%),
and HBGI (<4.5, 4.5-9.0, and >9.0)."” 2" The observed
values among participants were also divided into two
groups for TBR™* (<1.0% and >1.0%) and LBGI (<2.5and
>9.5).17?7 Patients with type 1 diabetes with CVs of >36%
are at a higher risk of hypoglycemia,'” % whereas patients
with T2DM with CVs of <30% avoid hypoglycemia.*
Therefore, in this study, patients were categorized into
two groups based on their CV value: <30.0% and >30.0%.
Furthermore, the participants were divided into four
groups based on their GA/HbAlc and GRI values.

The Jonckheere-Terpstra test was used to compare
the data trends among the three groups. The Cochran-
Armitage test was used to determine the ratio trends
between the three groups. The Mann-Whitney U test was
used to compare continuous variables, and the XQ test, or
Fisher’s exact test was used to compare categorical data.

Univariate logistic regression analysis was performed
with the severity of WMLs as the objective variable and
each glycemic control index as the explanatory vari-
able. The progression of WMLs has been reported to be
strongly associated with aging, hypertension, and dyslip-
idemia.*"" Therefore, a multivariate logistic regression
analysis with the severity of WMLs as the objective variable
and each glycemic control index and age as explanatory
variables was performed using Model 1. Furthermore, a
multivariate logistic regression analysis was performed
using Model 2, a model that added the presence of
hypertension and dyslipidemia as an explanatory variable
to Model 1, and Model 3, a model that added a history
of cerebrovascular disease as an explanatory variable to
Model 2.

A simple linear regression analysis was performed
with the Z-score in the VOI as the objective variable and
each glycemic control index as the explanatory variable.

Next, multiple regression analysis was performed with
the Z-score in the VOI as the objective variable and each
glycemic control index and age as explanatory variables
(Model 1). Furthermore, multiple regression analysis was
performed using Model 2, which added the presence of
hypertension and dyslipidemia, history of cerebrovas-
cular disease, sex, body mass index (BMI), and smoking
as explanatory variables to Model 1.

In this study, a p value of <0.05 was considered statisti-
cally significant. Statistical analyses were conducted using
the BellCurve software V.4.04 (Social Survey Research
Information, Tokyo, Japan).

RESULTS

Study participants

The characteristics of the participants are shown in
online supplemental table 1. There were 150 partic-
ipants, comprising 44 women and 106 men. The age
was 69.0 (64.0-72.0) years; the duration of T2DM was
14.0 (8.0-24.0) years; BMI was 24.0 (22.3-26.0) kg/m2;
HbAlc was 7.0 (6.6-7.6)% (52 (48-59) mmol/mol); GA
was 18.3 (16.3-20.4)%; GA/HbAlc was 2.6 (2.4-2.8).
For the CGM index, the value analyzed using all sensor
data for the mean SG value was 141.9 (125.1-165.8) mg/
dL, and the value analyzed excluding certain days was
141.0 (124.2-165.7) mg/dL. TIR calculated from all
CGM data was 77.9 (65.3-88.1) mg/dL, TAR®" was 1.1%
(0%—-6.7%), TAR™ was 18.1% (8.4%-34.0%), TBR*"’
was 0.2% (0%-2.1%), TBR** was 0% (0%—0%), and GRI
was 22.1% (12.6%-40.9%).

Forty-nine (32.7%) participants had severe deep
subcortical WMLs (DSWMLs) and 23 (15.3%) partici-
pants had severe periventricular WMLs (PWMLs). All
participants with severe PWMLs also had severe DSWMLs.
The Z-score in the target VOI assessed using voxel-based
morphometry (VBM) for the participants of this study
was 0.58 (0.43-0.83). Twenty (13.3%) participants had a
Z-score of >1.0, indicating MTA.

Relationship between WMLs and glycemic control indices
Table 1 and online supplemental table 2 show the differ-
ences in clinical parameters of participants with and
without severe WMLs. Participants with severe WMLSs had
higher rates of prior cerebrovascular disease than those
without severe WMLs. Although there were no signifi-
cant differences in age, sex, duration of diabetes, HbAlc,
or smoking status between the two groups, the group
with severe WMLs had significantly more patients with
hypertension (p=0.024) and a history of cerebrovascular
disease (p=0.003). In contrast, the group with severe
WMLs had significantly fewer patients with dyslipidemia
(p=0.041). In addition, patients with severe WMLs had
lower mini-mental state examination (MMSE) scores. No
significant differences were found in the use of diabetes
medications between the two groups.

The relationship between WMLs and CGM-derived
glycemic control indices is shown in figure 1. The
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Figure 1 Comparisons of the prevalence of severe cerebral white matter lesions (WMLs) based on glycemic control indices.
(A) Mean sensor glucose (SG), (B) coefficient of variation (CV), (C) time spent with SG values in the range of 70-180mg/dL (time
in range (TIR)), (D) time spent with SG values higher than 250 mg/dL (time above range (TAR*?%Y)), (E) time spent with SG values
higher than 180 mg/dL (TAR>'®), (F) time spent SG values below 70mg/dL (time below range (TBR<"%), (G) time spent SG
values below 54 mg/dL (TBR**%, (H) glycemia risk index (GRI), (I) hyperglycemia component (HyperCompo), (J) hypoglycemia
component (HypoCompo), (K) high blood glucose index (HBGI), and (L) low blood glucose index (LBGI). The prevalence of
severe WML was examined using the Cochran-Armitage test.

proportion of patients with severe WMLs decreased with ~ p=0.004), TAR™™ (crude OR, 1.018; 95% CI, 1.002 to
increasing TIR (P for trend=0.006). On the other hand, 1.035; p=0.031), GRI (crude OR, 1.026; 95% CI, 1.011
the proportion of patients with severe WMLs increased to 1.041; p<0.001), HyperCompo (crude OR, 1.019;
with increase in median values of hyperglycemic indices, 95% CI, 1.004 to 1.035; p=0.012), and HBGI (crude OR,
such as TAR™®' (P for trend<0.001), TAR™ (P for  1.127; 95% CI, 1.031 to 1.232; p=0.009). In contrast, no
trend=0.047), HyperCompo (p=0.004), and HBGI significant association was found between severe WMLs
(p=0.042). Similarly, the proportion of patients with  and HbAlc (crude OR, 1.155; 95% CI, 0.754 to 1.768;
severe cerebral WMLs increased with increasing GRI p=0.508), mean SG (crude OR, 1.010; 95% CI, 0.999 to

(p=0.011). 1.020; p=0.063), or CV (crude OR, 1.022; 95% CI, 0.967
The association between cerebral WMLs and hypogly-  to 1.080; p=0.436). Furthermore, no significant associ-
cemic indices was then investigated. No significant asso-  ations were found between WLM severity and hypogly-

ciation was observed between TBR" (P for trend=0.887) cemic indices, such as TBR** (crude OR, 1.125; 95% CI,
or TBR™* (p=0.790) and the proportion of patients with ~ 0.934 to 1.354; p=0.214), HypoCompo (crude OR, 1.016;
severe WMLs. Furthermore, no significant association 95% CI, 0.994 to 1.038; p=0.146), and LBGI (crude OR,
was found between the proportion of patients with severe 1.104; 95% CI, 0.894 to 1.363; p=0.359). Similar results
cerebral WMLs and HypoCompo (P for trend=0.888)  were obtained for the glycemic control indices calcu-
and LBGI (p=0.190). lated from CGM data with specific days removed.

Next, univariate logistic regression analysis was For Model 1, we performed a multivariate logistic regres-
performed with WML severity as the objective variable  sion analysis with severe WMLs as the objective variable and
and each glycemic control index as an explanatory  each glycemic control index (calculated from all CGM data)
variable (table 2 and online supplemental table 3). and age as explanatory variables. The results indicated that
The results showed that the WML severity was signifi-  the severity of WMLs was significantly associated with TIR
cantly associated with TIR calculated from all CGM  (OR, 0.976; 95% CI, 0.958 to 0.993, p=0.007), TAR®" (OR,
data (crude OR, 0.976; 95% CI, 0.959-0.993; p=0.006), 1.060; 95% CI, 1.017 to 1.106, p=0.006), TAR™ (OR, 1.020;
TAR™®" (crude OR, 1.063; 95%CI, 1.020 to 1.108;  95%CI, 1.002 to 1.040, p=0.034), GRI (OR, 1.026; 95% CI,
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Table 2 Association between the severity of cerebral white matter lesions and glycemic control indices

Severe white matter lesions

OR (95% Cl) P value OR (95% CI) P value
HbA1c GA/HbA1c
Univariate 1.155 (0.754 to 1.768) 0.508 Univariate 2.338 (0.896 to 6.102) 0.083
Model 1 1.163 (0.794 to 2.132) 0.494 Model 1 2.013 (0.750 to 5.406) 0.165
Model 2 1.335 (0.838 to 2.126) 0.225 Model 2 1.513 (0.519 to 4.408) 0.448
Model 3 1.326 (0.820 to 2.145) 0.250 Model 3 1.045 (0.331 to 3.296) 0.940
Mean SG Ccv
Univariate 1.010 (0.999 to 1.020) 0.063 Univariate 1.022 (0.967 to 1.080) 0.436
Model 1 1.009 (0.999 to 1.020) 0.091 Model 1 1.024 (0.969 to 1.083) 0.403
Model 2 1.011 (1.000 to 1.022) 0.048 Model 2 1.017 (0.960 to 1.079) 0.562
Model 3 1.011 (1.000 to 1.022) 0.051 Model 3 1.015 (0.956 to 1.077) 0.628
TIR TAR>?%0
Univariate 0.976 (0.959 to 0.993) 0.006 Univariate 1.063 (1.020 to 1.108) 0.004
Model 1 0.976 (0.958 to 0.993) 0.007 Model 1 1.060 (1.017 to 1.106) 0.006
Model 2 0.973 (0.955 to 0.991) 0.004 Model 2 1.069 (1.024 to 1.116) 0.003
Model 3 0.973 (0.955 to 0.992) 0.005 Model 3 1.066 (1.021 to 1.112) 0.003
-I-AR>180 TBR<7O
Univariate 1.018 (1.002 to 1.035) 0.031 Univariate 1.041 (0.987 to 1.098) 0.137
Model 1 1.020 (1.002 to 1.040) 0.034 Model 1 1.049 (0.992 to 1.110) 0.093
Model 2 1.021 (1.0083 to 1.039) 0.022 Model 2 1.045 (0.984 to 1.110) 0.151
Model 3 1.021 (1.003 to 1.039) 0.022 Model 3 1.047 (0.982 to 1.115) 0.159
TBR*** GRI
Univariate 1.125 (0.934 to 1.354) 0.214 Univariate 1.026 (1.011 to 1.041) <0.001
Model 1 1.148 (0.952 to 1.384) 0.149 Model 1 1.026 (1.011 to 1.042) <0.001
Model 2 1.150 (0.945 to 1.399) 0.164 Model 2 1.029 (1.012 to 1.046) <0.001
Model 3 1.145 (0.932 to 1.405) 0.197 Model 3 1.029 (1.012 to 1.046) <0.001
HyperCompo HypoCompo
Univariate 1.019 (1.004 to 1.035) 0.012 Univariate 1.016 (0.994 to 1.038) 0.146
Model 1 1.019 (1.003 to 1.034) 0.018 Model 1 1.019 (0.997 to 1.042) 0.094
Model 2 1.022 (1.006 to 1.038) 0.008 Model 2 1.018 (0.994 to 1.042) 0.147
Model 3 1.021 (1.005 to 1.038) 0.009 Model 3 1.018 (0.993 to 1.044) 0.154
HBGI LBGI
Univariate 1.127 (1.031 to 1.232) 0.009 Univariate 1.104 (0.894 to 1.363) 0.359
Model 1 1.124 (1.026 to 1.232) 0.012 Model 1 1.138 (0.918 to 1.412) 0.238
Model 2 1.142 (1.039 to 1.256) 0.006 Model 2 1.135 (0.903 to 1.426) 0.278
Model 3 1.141 (1.038 to 1.255) 0.006 Model 3 1.127 (0.888 to 1.431) 0.324

Univariate logistic regression analysis was performed with the presence of severe cerebral white matter lesions as the objective

variable and each glycemic control index as an explanatory variable. Multivariate logistic regression analysis was then performed on
each glycemic control index plus age as explanatory variables in Model 1. Model 2 is Model 1 with the presence of hypertension and
dyslipidemia added as explanatory variables, and Model 3 is Model 2 with a history of cerebrovascular disease added as an explanatory

variable.

CV, coefficient of variation; GA, glycated albumin; GRI, glycemia risk index; HbA1c, hemoglobin A1c; HBGI, high blood glucose index;
HyperCompo, hyperglycemia component; HypoCompo, hypoglycemia component; LBGI, low blood glucose index; SG, sensor glucose;

TAR, time above range; TBR, time below range; TIR, time in range.

1.011 to 1.042, p<0.001), HyperCompo (OR, 1.019; 95% CI,
1.003 to 1.034, p=0.018), and HBGI (OR, 1.124; 95%CI,
1.026 to 1.232, p=0.012). In contrast, no significant associ-
ations were found between severe WMLs and HbAlc, CV,

or hypoglycemic indices, such as TBR™*, and LBGI. Similar
results regarding the association between severe WMLs and
each glycemic control index were obtained in Model 2, in
which the presence of hypertension and dyslipidemia were
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Figure 2 Comparisons of Z-scores in the volume of interest (VOI) based on glycemic control indices. (A) Mean sensor
glucose (SG), (B) coefficient of variation (CV), (C) time spent with SG values in the range of 70-180mg/dL (time in range (TIR)),
(D) time spent with SG values higher than 250 mg/dL (time above range (TAR*??%), (E) time spent with SG values higher than
180mg/dL (TAR>'®), (F) time spent SG values below 70mg/dL (time below range (TBR<"%), (G) time spent SG values below
54 mg/dL (TBR**¥), (H) glycemia risk index (GRI), (I) hyperglycemia component (HyperCompo), (J) hypoglycemia component
(HypoCompo), (K) high blood glucose index (HBGI), and (L) low blood glucose index (LBGI). The Z-scores in the target VOI
were examined using the Jonckheere-Terpstra test or the Mann-Whitney U test.

added as covariates, and in Model 3, in which a history of
cerebrovascular disease was added as a covariate.

Relationship between brain atrophy and glycemic control
indices

Table 1 and online supplemental table 2 show the differ-
ences in clinical parameters between subjects with and
without MTA. Participants with MTA showed significantly
higher age and longer duration of T2DM than those
without MTA. The relationship between MTA severity
and glycemic control indices is shown in figure 2. There
were no significant associations between the presence of
MTA and blood glucose control indices, such as HbAlc
(P for trend=0.381), TIR (P for trend=0.325), TAR**" (P
for trend=0.155), TBR™"” (P for trend=0.222), or GRI (P
for trend=0.447).

A simple linear regression analysis was then performed
with the Z-score in the VOI as the objective variable and each
glycemic control index as the explanatory variable (table 3
and online supplemental table 4). The results showed no
significant association between the Z-score in the VOI and
any of the CGM-derived glycemic control indices. In contrast,
a significant association was observed between the Z-score in
the VOI and GA/HbAlc (standardized partial regression
coefficient () = 0.270, p<0.001). A significant association
between the Z-score in the VOI and GA/HbAlc was also

found in multivariate-adjusted Model 1 ($=0.210, p=0.009)
and Model 2 ($=0.190, p=0.030).

DISCUSSION

The findings of this study show that in Japanese patients with
T2DM, the frequency of patients with severe WMLs tends
to increase with worsening TIR and GRI, which are indices
reflecting the quality of glycemic control. In particular, our
results show that the severity of WMLs is associated with hyper-
glycemia indices, such as TAR, HyperCompo, and HBGI, but
not with hypoglycemia indices, such as TBR, HypoCompo,
and LBGI. In addition, MTA assessed using VBM was not
associated with CGM-derived TIR, TAR, or GRIL.

T2DM is associated with an increased risk of dementia,
including Alzheimer’s disease.”* MTA is a useful indicator
of early Alzheimer’s disease,” ® and T2DM is associated
with MTA regardless of vascular pathology.”™ On the other
hand, some reports indicate that global brain volume reduc-
tion rather than MTA is prominent in patients with T2DM.”
Furthermore, some patients with T2DM who are clinically
diagnosed with Alzheimer’s disease have diffuse cortical
atrophy and less severe MTA.”' * The results of this study indi-
cate that MTA and shortterm glycemic control indices are
not significantly associated in patients with T2DM. However,
the number of cases with MTA among the participants was
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Table 3 Relationship between medial temporal atrophy
and glycemic control index

Z-scores in the target VOI

g P value s P value

HbA1c GA/HbA1c

Univariate  -0.002 0.979 Univariate 0.270 <0.001

Model 1 0.004  0.964 Model 1 0.210 0.009

Model 2 0.053  0.506 Model 2 0.190 0.030
Mean SG Cv

Univariate  0.075  0.364 Univariate -0.065 0.429

Model 1 0.042 0.594 Model 1 -0.060 0.441

Model 2 0.071  0.371 Model 2 -0.068 0.424
TIR TAR%0

Univariate  -0.032 0.699 Univariate 0.141  0.085

Model 1 -0.022 0.775 Model 1 0.103 0.192

Model 2 -0.055 0.489 Model 2 0.124 0.117
TAR> 80 TBR<®

Univariate 0.042  0.613 Univariate -0.037 0.650

Model 1 0.024 0.763 Model 1 -0.010 0.925

Model 2 0.056  0.476 Model 2 -0.015 0.845
TBR** GRI

Univariate  0.023  0.778 Univariate 0.042 0.610

Model 1 0.050 0.525 Model 1 0.040 0.610

Model 2 0.040 0.610 Model 2 0.069 0.389
HyperCompo HypoCompo

Univariate 0.076  0.353 Univariate -0.034 0.683

Model 1 0.051 0.519 Model 1 -0.004 0.964

Model 2 0.081  0.307 Model 2 -0.012 0.883
HBGI LBGI

Univariate  0.073  0.376 Univariate -0.066 0.419

Model 1 0.048 0.546 Model 1 -0.030 0.705

Model 2 0.075  0.341 Model 2 -0.032 0.681

A simple linear regression analysis was performed with the Z-score

in the volume of interest (VOI) as the objective variable and each
glycemic control index as the explanatory variable. A multiple
regression analysis was then performed on each glycemic control
index plus age as explanatory variables in Model 1. Furthermore, in
Model 2, a multiple regression analysis was performed by adding sex,
body mass index, presence of hypertension and dyslipidemia, history
of cerebrovascular disease, and smoking as explanatory variables to
Model 1.

CV, coefficient of variation; GA, glycated albumin; GRI, glycemia

risk index; HbA1c, hemoglobin A1c; HBGI, high blood glucose

index; HyperCompo, hyperglycemia component; HypoCompo,
hypoglycemia component; LBGI, low blood glucose index; SG, sensor
glucose; TAR, time above range; TBR, time below range; TIR, time in
range; 3, standardized partial regression coefficient.

small as patients with cognitive impairment were excluded
from this study, making for a small sample size. In addition,
fluctuations in blood glucose concentrations and related
osmotic changes may affect brain volumes in patients with
T2DM.”* Therefore, larger prospective studies are needed
to investigate the association between MTA and CGM-derived
glycemic control indices.

3

Severe WMLs have been linked to an increased risk of
stroke, all-cause mortality, and dementia®!! In fact, patients
with severe WMLs had significantly lower MMSE scores than
those without severe WMLs in this study, which excluded
patients with dementia. The main etiology of cerebral WMLs
is ischemia, and small arteries penetrating the cerebral white
matter are predisposed to atherosclerosis.” ** Therefore, risk
factors for atherosclerotic diseases, such as hypertension,
dyslipidemia, and T2DM, are risk factors for WMLs and
stroke.*™*

Although many of the subjects in the present study main-
tained good glycemic control as evidenced by a median
HbAlc of 7.0%, the severity of cerebral WMLs was associated
with CGM-derived glycemic control indices. Vascular endo-
thelial dysfunction plays a vital role in the progression of
atherosclerosis. Furthermore, vascular endothelial dysfunc-
tion has been linked to CSVD via increased blood—brain
barrier permeability.”” ** Oxidative stress induced by hyper-
glycemia and large glycemic variability decreases nitric oxide
synthase activity and causes vascular endothelium dysfunc-
tion.” ™ In fact, the results of this study showed that the
severity of cerebral WMLs was associated with hyperglycemia
indices, such as TAR®" and HBGI, and with GRI, an index of
the quality of glycemic control. HBGI is an index that reflects
the frequency and severity of hyperglycemia, and its value
increases with higher blood glucose levels.”! GRI is an index
calculated from the CGM-derived TAR and TBR.* It is char-
acterized by its emphasis on TAR™® rather than TAR"***" in
the calculation of the hyperglycemia component, and as with
the HBGI, the worse the degree and duration of hypergly-
cemia, the higher its value.” In the participants of this study,
the GRI was mainly derived from HyperCompo because of
the low TBR™*. The severity of cerebral WMLs was partic-
ularly associated with TAR™’, suggesting that risk indices,
such as HBGI and GRI, are associated with the severity of
cerebral WMLs. Furthermore, TIR is associated with diabetic
microvascular and macrovascular complications,"” ***
which may explain why TIR was significantly associated with
the severity of cerebral WMLs in this study.

In contrast to TIR and hyperglycemia indices (such as
TAR™™, TAR™", and HyperCompo), the present study
showed that mean SG was not significantly associated with
the severity of WMLs. Although mean SG has been reported
to be highly correlated with TAR,* ** both hyperglycemia
and hypoglycemia affect mean SG and HbAlc levels.” This
study showed that there was no association between hypo-
glycemic indices and the severity of WMLs unlike hypergly-
cemia indices. Thus, the results of this study suggest that
hyperglycemia indices might be more related to the severity
of WMLs than mean SG. Although hypoglycemia has been
reported to be linked to an increased dementia risk,*® cere-
bral WMLs and MTA were not associated with hypoglycemic
indices. This discrepancy could be due to small sample size,
the participants in this study had low TBR™* and LBGI, and
few participants had severe hypoglycemia. Thus, probably,
significant association between hypoglycemic indices and
alterations in brain structure was not revealed in this study. A
larger study is required to investigate the association between
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alterations in brain structure and mean SG and hypogly-
cemia indices.

The severity of cerebral WMLs was not significantly associ-
ated with CV, which is one of the glycemic variability indices.
CVs of >36% increase the risk of hypoglycemia in type 1
diabetes.' " A CV cut-off of 34.0% prevents hypoglycemia in
patients with T2DM.* A study of patients with T2DM using
FreeStyle Libre Pro (similar to the present study) reported
a more conservative CV cut-off of 30.0% to avoid hypogly-
cemia.” However, it has been reported that the CV cutoff
value increases as HbAlc decreases.!’ Therefore, in T2DM,
CV targets may differ depending on diabetes medications
and glycemic control status.” Thus, the association between
cerebral WMLs and glycemic variability may be better evalu-
ated using glycemic variability indices, such as mean ampli-
tude of glycemic excursion and continuous overlapping net
glycemic action.*

This study has several limitations. First, the number of
patients with severe WMLs was small (49 subjects), which
may have affected the validity of the logistic model.”” There-
fore, a largerscale study is considered necessary. Second, the
subject population was well glycemic controlled, as evidenced
by median HbAlc, TIR, and TBR™* values of 7.0%, 77.9%,
and 0%, respectively. The proportion of patients with HbAlc
levels of >8.0 was small (12.7%) because only Japanese
patients with T2DM under diabetologist’s care were enrolled
in this study. Although this study shows that WML severity and
TIR and GRI are associated even in populations with good
glycemic control, further investigations of CGM-derived
glycemic control indices and brain imaging markers from
more diverse populations are needed to indicate, further, the
importance of this finding. Third, CV was used as an index
of glycemic variability; however, there is no consensus in the
cutoff value of CV in T2DM. Therefore, other glycemic vari-
ability indices may need to be investigated. Fourth, this is a
crosssectional study. Long-term prospective studies on the
relationship between glycemic control indices and cerebral
imaging markers are needed. Last, the generalizability of
the findings may be limited because the participants in this
study were older people from a specific urban area in Japan.
Therefore, larger-scale studies are needed in the future.

In conclusion, the results of the present study show
that cerebral WML severity is associated with hypergly-
cemic indices. Furthermore, cerebral WML severity is
associated with TIR and GRI, which are indices of the
quality of glycemic control. However, MTA is not signifi-
cantly associated with CGM-derived TIR or GRI.
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